..

1.0 三角函数

一、弧度制

1.角的概念

始边

终边

顶点

正角

负角

零角

2.弧度制的历史

3.弧度制的定义

角度制

弧度制

\[\lvert \alpha \rvert = \frac{l}{r}\]

其中 $\alpha$ 的正负由角 $\alpha$ 终边的旋转方向决定。

\[360^\circ = 2 \pi (\mathrm{rad})\]

$1$ 弧度的弧长等于半径的长度 $r$,相当于圆周长 $2 \pi r$ 的 $\frac{1}{2 \pi}$,所以 $1$ 弧度相当于 $360^\circ$ 的 $\frac{1}{2 \pi}$。

\[\begin{aligned} S & = \pi R^2 \cdot \frac{\theta}{2 \pi} \\ & = \frac{1}{2} R^2 \theta \\ & = \frac{1}{2} (R \theta) \cdot R \\ & = \frac{1}{2} \cdot l \cdot R \end{aligned}\]

二、任意角三角函数

1. 三角函数的定义

在任意角 $\alpha$ 的终边上任取一点 $P$,设 $P$ 点坐标为 $(x, ~ y)$,$OP = r$,则不难得到:

\[r = \sqrt{x^2 + y^2} ~ (r > 0)\]

我们规定:

正弦

\[\sin{\alpha} = \frac{y}{r}\]

余弦

\[\cos{\alpha} = \frac{x}{r}\]

正切

\[\tan{\alpha} = \frac{y}{x} (x \neq 0)\]

余切

\[\cot{\alpha} = \frac{x}{y} (y \neq 0)\]

正割

\[\sec{\alpha} = \frac{r}{x} (x \neq 0)\]

余割

\[\csc{\alpha} = \frac{r}{y} (y \neq 0)\]

2.单位圆

3.同角三角函数的关系

正弦,余弦和正切的关系

\[\sin^2{\alpha} + \cos^2{\alpha} = 1\] \[\tan{\alpha} = \frac{\sin{\alpha}}{\cos{\alpha}}\]

六个三角函数之间的关系

(1)倒数关系:
\[\sin{\alpha} \cdot \csc{\alpha} = 1; ~ \cos{\alpha} \cdot \sec{\alpha} = 1; ~ \tan{\alpha} \cdot \cot{\alpha} = 1\]
(2)乘积关系:
\[\sin{\alpha} = \tan{\alpha} \cdot \cos{\alpha}, ~ \cos{\alpha} = \sin{\alpha} \cdot \cot{\alpha}, ~ \cot{\alpha} = \cos{\alpha} \cdot \csc{\alpha}\] \[\csc{\alpha} = \cot{\alpha} \cdot \sec{\alpha}, ~ \sec{\alpha} = \csc{\alpha} \cdot \tan{\alpha}, ~ \tan{\alpha} = \sec{\alpha} \cdot \sin{\alpha}\]
(3)平方关系:
\[\sin^2{\alpha} + \cos^2{\alpha} = 1\] \[1 + \tan^2{\alpha} = \sec^2{\alpha}\] \[1 + \cot^2{\alpha} = \csc^2{\alpha}\]

诱导公式

三、三角恒等变换

1.和差角公式

\[\begin{aligned} \mathcal{C}_{\alpha \pm \beta} : \cos(\alpha \pm \beta) & = \cos{\alpha} \cos{\beta} \mp \sin{\alpha} \sin{\beta} \\ \mathcal{S}_{\alpha \pm \beta} : \sin(\alpha \pm \beta) & = \sin{\alpha} \cos{\beta} \pm \cos{\alpha} \sin{\beta} \\ \mathcal{T}_{\alpha \pm \beta} : \tan(\alpha \pm \beta) & = \frac{\tan{\alpha} \pm \tan{\beta}}{1 \mp \tan{\alpha} \tan{\beta}} \end{aligned}\]

2.辅助角公式

\[a \sin{\theta} + b \cos{\theta}\]

可以转化成

\[\sqrt{a^2 + b^2} \sin(\theta + \varphi)\]

其中

\[\begin{aligned} \sin{\varphi} & = \frac{b}{\sqrt{a^2 + b^2}} \\ \cos{\varphi} & = \frac{a}{\sqrt{a^2 + b^2}} \end{aligned}\]

3.二倍角公式

\[\begin{aligned} \sin{2 \alpha} & = 2 \sin{\alpha} \cos{\alpha} \\ \cos{2 \alpha} & = \cos^2{\alpha} - \sin^2{\alpha} = 2 \cos^2{\alpha} - 1 = 1 - 2 \sin^2{\alpha} \\ \tan{2 \alpha} & = \frac{2 \tan{\alpha}}{1 - \tan^2 \alpha} \end{aligned}\]

3.5.半倍角公式

\[\begin{aligned} \sin{\frac{\alpha}{2}} & = \pm \sqrt{\frac{1 - \cos{\alpha}}{2}} \\ \cos{\alpha} & = 2 \cos^2{\frac{\alpha}{2}} - 1 = 1 - 2 \sin^2{\frac{\alpha}{2}} \\ \cos{\frac{\alpha}{2}} & = \pm \sqrt{\frac{1 + \cos{\alpha}}{2}} \\ \tan{\frac{\alpha}{2}} & = \pm \sqrt{\frac{1 - \cos{\alpha}}{1 + \cos{\alpha}}} = \frac{\sin{\alpha}}{1 + \cos{\alpha}} = \frac{1 - \cos{\alpha}}{\sin{\alpha}} \end{aligned}\]

4.积化和差与和差化积

积化和差

\[\begin{aligned} \sin{\alpha} \cos{\beta} & = ~~~ \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)] \\ \cos{\alpha} \sin{\beta} & = ~~~ \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)] \\ \cos{\alpha} \cos{\beta} & = ~~~ \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)] \\ \sin{\alpha} \sin{\beta} & = - \frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)] \end{aligned}\]

和差化积

\[\begin{aligned} \sin{\alpha} + \sin{\beta} & = ~~~ 2 \sin{\frac{\alpha + \beta}{2}} \cos{\frac{\alpha - \beta}{2}} \\ \sin{\alpha} - \sin{\beta} & = ~~~ 2 \cos{\frac{\alpha + \beta}{2}} \sin{\frac{\alpha - \beta}{2}} \\ \cos{\alpha} + \cos{\beta} & = ~~~ 2 \cos{\frac{\alpha + \beta}{2}} \cos{\frac{\alpha - \beta}{2}} \\ \cos{\alpha} - \cos{\beta} & = -2 \sin{\frac{\alpha + \beta}{2}} \sin{\frac{\alpha - \beta}{2}} \end{aligned}\]

四、正、余弦定理

1.正弦定理

\[\begin{aligned} S_{\Delta{ABC}} & = \frac{1}{2} AB \cdot CD = \frac{1}{2} ab \sin{C} \\ S_{\Delta{ABC}} & = \frac{1}{2} ac \sin{B} = \frac{1}{2} bc \sin{A} \end{aligned}\] \[\frac{a}{\sin{A}} = \frac{b}{\sin{B}} = \frac{c}{\sin{C}} = 2 R\]

2.余弦定理

\[\begin{aligned} a^2 & = b^2 + c^2 - 2bc \cos{A} \\ b^2 & = a^2 + c^2 - 2ac \cos{B} \\ c^2 & = a^2 + b^2 - 2ab \cos{C} \end{aligned}\] \[\begin{aligned} \cos{A} & = \frac{b^2 + c^2 - a^2}{2bc}, \\ \cos{B} & = \frac{a^2 + c^2 - b^2}{2ac}, \\ \cos{C} & = \frac{a^2 + b^2 - c^2}{2ab} \end{aligned}\]